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The exact dynamical evolution of the director field for splay-bend deformations, in nematic liquid crystal
samples limited by inhomogeneous surfaces, is determined in the one-constant approximation. The initial
conditions and boundary-value problem concerning the situation of strong anchoring at the surfaces of a
sample of slab shape of thickness d is analytically solved in the presence of a time dependent external electric
field, and taking into account the viscous torque. The results are used to analytically obtain the time depen-
dence of the phase shift between the two components of a linearly polarized beam impinging perpendicularly
on the sample. The analysis can be relevant to investigate the phase retardation of a nematic cell submitted to
an external voltage which is lower than or in the order of the Féedericksz threshold to induce deformations in
the sample.
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The evaluation of the director field n, or the determination
of the profile of the tilt angle of a nematic liquid crystal
�NLC� sample, is performed in the framework of the elastic
continuum theory �1–6�. In the absence of external fields, the
director n depends on the surface treatment. The influence of
inhomogeneous surfaces on the molecular orientation of a
NLC sample has been analyzed by several authors in the
framework of the Frank-Oseen elasticity �7–22�. On the
other hand, the effects of external applied fields are crucial in
the performance of electro-optical devices based on liquid
crystalline materials �23�. As is well known, when submitted
to the influence of external fields NLCs exhibit a large vari-
ety of dynamical behavior �24�. The most common phenom-
enon is the field-induced distortion known as the Fréeder-
icksz transition �25�, which is usually treated as a second
order phase transition, except near the inversion point of
main anisotropy �26� or when feedback effects are taken into
account �27�, when it can be first order. To face these com-
plex phenomena from the theoretical side is a hard task and
only simplified or specific models can be treated in an ana-
lytical way �28�.

In this Brief Report, we establish the exact dynamical
behavior of the tilt angle for splay-bend geometry in a
sample of NLC in the shape of a slab of thickness d for the
cases of strong anchoring under the action of a time-
dependent applied electric field, when the surfaces are char-
acterized by a spatially dependent distribution of the easy
axes. We present the complete analytical solution for the pro-
file of the tilt angle in the framework of the elastic con-
tinuum theory, in the one-constant approximation, by taking
into account the viscous torque. The results can be relevant
to a sample in which the applied field is lower than or in the
order of the Fréedericksz threshold field to induce deforma-
tions in the nematic structure, i.e., we are considering small
deformations. We are therefore assuming that the electric
field is homogeneous across the sample and effects like the
selective adsorption of ions are not considered in a first ap-
proximation �29�. We assume, furthermore, that in the vicin-
ity of the Fréedericksz transition, the backflow effects can be
ignored. Since the general solution is presented in closed
analytical form, one illustrative example of a time-dependent

electric field is discussed in detail. We consider the typical
case in which the applied field is represented by a square-
wave signal, but as will be clearer below, other general forms
of time variation of the applied field can be considered.

We consider a nematic slab of thickness d. The Cartesian
reference frame is chosen with the z axis normal to the
bounding plates, located at z= ±d /2. The x axis is parallel to
the direction along which the surface tilt angle is expected to
change, and the tilt angle, ��x ,z�, made by the nematic di-
rector with the z axis, is supposed y independent and such
that n=sin ��x ,z�i+cos ��x ,z�k, where i and k are the unit
vectors parallel to the x and z axes, respectively. In the one-
constant approximation, K11=K22=K33=K, the bulk free en-
ergy density due to elastic distortions in the presence of a
time dependent external field E=E�t�k is given by �30�

F���x,z�� = �
−�

�

dx�
−d/2

d/2

dz�1

2
K���� �2 +

�a

2
E2�t��2� �1�

in the limit of small �. This approximation is justified if we
limit our analysis to the cases in which the applied field is of
the order of the Fréedericksz threshold �31�. In Eq. �1� �a
=�� −�� �� and � refer to the direction of n� is the dielectric
anisotropy. When the sample is submitted to an electric field,
the electric torque can destabilize the initial homeotropic ori-
entation if �a�0, and tends to reinforce the homeotropic
pattern if �a�0 since we are not taking into account the
flexoelectric contribution to the free energy �32�.

To analyze the dynamics of the orientation induced by the
field we have to consider also a viscous torque. By minimiz-
ing Eq. �1�, taking into account the viscous torque, we find
that the dynamical evolution of the system is governed by
the equation

�2�

��2 +
�2�

��2 = �2�t�� +
��

�t
, �2�

written in a nondimensional form by introducing reduced
coordinates �→x /d, and �→z /d and a reduced time
t→ t /	v, where 	v=
d2 /K is the viscous relaxation time and

 is an effective viscosity coefficient of the liquid crystal �2�.
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In this manner, �2�t�=�2�E�t� /Ec�2, where Ec
2=�2K /�a is the

threshold field for the Fréedericksz transition in strong an-
choring �30�. As will be shown below, for �a�0 increasing
the strength of the applied field will produce a decrease in
the optical path difference, because, as pointed out above, the
field tends to stabilize the uniform orientation. The solution
of Eq. �2� is the function ��� ,� , t� subjected to an initial
condition and satisfying appropriated boundary conditions.
For the case characterized by the strong anchoring on both
surfaces the boundary conditions are �30�

	���,�,t�	�=±1/2 = �±��� . �3�

In Eq. �3�, �±��� accounts for the surface orientation im-
posed by the surface treatment, i.e., the easy axes on the
upper �� and lower ��� surfaces, respectively. The initial
condition, for simplicity, is assumed as ��� ,� ,0�=�0�� ,��.
Thus, we characterize the initial state of the system, i.e., how
the system was initially prepared, by �0�� ,��. In order to
solve Eq. �2�, we consider that the solution has the form

���,�,t� = �S��,�� + �̃��,�,t� , �4�

where �S�� ,�� is the stationary solution obtained from the
Laplace equation �2�S=0 taking the boundary condition

	�S�� ,��	�=±1/2=�±��� into account. In particular, the solu-
tion for �S�� ,�� is given by �15–17�

�S��,�� = 

i=+,−

�
−�

�

d��Gi�� − ��,���i���� �5�

with

G±��,�� =
1

2

cos����
cosh���� � sin����

. �6�

By substituting Eq. �4� in Eq. �2� and Eq. �3�, we obtain

�2

��2 �̃��,�,t� +
�2

��2 �̃��,�,t� − �2�t���̃��,�,t� + �S��,���

=
�

�t
�̃��,�,t� �7�

subjected to the initial condition �̃�� ,� ,0�=�0�� ,��−�S�� ,��
and the boundary condition �̃�� ,�= ±1/2 , t�=0. The solution
for Eq. �7� is given by

FIG. 1. �a� Profile of the tilt angle ��0,� , t� versus � for different
amplitudes of the step-like applied field. Solid line for t=0 and the
other lines for t=1.5. �b� ��2� versus dimensionless time t for dif-
ferent strengths of the step-like applied field.

FIG. 2. Time dependence of the exact profile of the tilt angle in
the center of the sample ��0,0 , t� for different strengths of the ap-
plied field. In �a� the field has the form �2�t�=�0

2t and in �b� ��t�
has the step-like profile of �12�.
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�̃��,�,t� = 

n=1

�

An��,t�cos��2n − 1���� + Bn��,t�sin�2n����

�8�

where An�� , t� and Bn�� , t� are coefficients to be determined.
In particular, these coefficients can be obtained by substitut-
ing Eq. �8� in Eq. �7�, employing the Fourier transform on �
and using the orthogonality of the cos�nx� and sin�nx� func-
tions. Thus, after some calculations it is possible to show that
the coefficients present in Eq. �8� are given by
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When ��� ,�� is known, the physical properties of the NLC
sample can be explored. For instance, in the case in which a
linear polarized beam impinges normally on the nematic
sample, the optical path difference �l, between the ordinary
and the extraordinary ray is given by �30� �l=1/2noRd��2�,
where

��2� =
d

�
�

−�/2d

�/2d �
−1/2

1/2

���,��2d�d� , �11�

is the average square tilt angle, evaluated over a typical
length �, connected with the diameter of the light beam.
Furthermore, R=1− �no /ne�2, and no and ne are, respectively,
the ordinary and extraordinary refractive indices. Thus, to
illustrate the effect produced by a time dependent electric
field applied to the system we use the previous results found
for ��� ,� , t� in Eq. �11�.

For simplicity, we consider a pretilted cell characterized
by the boundary condition 	�	�=1/2=� /8, 	�	�=−1/2=� /10,

such that we can assure the limit of small distortions. Fur-
thermore, we assume for the electric field part the form

�2�t� = �0
2�H�t − 1� − H�t − 2�� , �12�

where H��� is the Heaviside step function. The initial condi-
tion is such that ��� ,� ,0�=�S�� ,��, i.e., corresponding to the
stationary solution given by Eq. �5� for the boundary condi-
tions given above. In Fig. 1�a�, four instantaneous profiles of
the tilt angle are shown in the position �=0, as a function of
the distance from the surface in the case in which the applied
field has the form �12�. The solid line refers to the situation
before the application of the field at t=0, whereas the other
curves were depicted for the particular time t=1.5, which
corresponds precisely to the middle of the time interval dur-
ing which the field, of different amplitudes �0, is applied.
From this figure we observe that, depending on the strength
of the applied field, we may have a small or relatively large
deformation of the director field in a particular point of the
sample. In Fig. 1�b�, the average of the square of the tilt
angle, ��2�, which is proportional to the optical path differ-
ence and is given by Eq. �11�, is shown as a function of time.

FIG. 3. �a� Profile of the tilt angle ��1,� , t� for three different
values of the dimensionless time t. �b� ��2� versus t for different
strengths of the constant applied field. The curves were depicted for

 /d=�.
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The step-like form of the applied field governs the response
of the orientation of the sample, whose reorientation dynam-
ics is explicitly determined.

In Fig. 2 the time dependence of the exact profile of the
tilt angle in the center of the sample is shown for two differ-
ent distributions of the applied field. In Fig. 2�a�, we consider
an applied field in the form �2�t�=�0

2t, whereas in Fig. 2�b�
the field has the step-like profile �12�.

The response in Fig. 2�a� is slightly nonlinear for very
small times, due to the viscous torque, and becomes practi-
cally linear for long times, because the field increases for
increasing time. The common features of these illustrative
figures are the possibility of determining the exact response,
and consequently the precise characteristic times of these
responses, to applied fields in the sample. Another common
feature is that in these cases involving uniform easy direc-
tions the profile of the tilt angle is independent of �. An
illustrative example involving nonhomogenous distribution
of the easy direction could be the case represented by the
boundary conditions �similar to the ones considered by Ber-
reman �7��

���,− 1/2,t� = 0 and ���,1/2,t� = �0 sin�q�� , �13�

where q=2�d /
, with 
 representing the spatial periodicity
of the distribution. For simplicity, we assume furthermore a
constant electric field, such that ��t�2=�0. In Fig. 3�a� a

typical z-dependence of the tilt angle is shown in the position
�=x /d=1 for three different times. In Fig. 3�b� ��2� is shown
versus t for different strengths of the constant applied field.
As expected, for �a�0 �as is the case considered here� the
increase of the strength of the applied field is accompanied
by a decrease in the optical path difference, because the field
tends to favor the �uniform� homeotropic orientation in the
sample despite the periodic distribution of the easy axis on
the upper surface. Anyway, due to the strong anchoring con-
ditions the optical path difference indicates that the sample is
always distorted.

In conclusion, we have presented a theoretical framework
to investigate the dynamics of the director reorientation in a
nematic liquid crystal sample under the action of an external
time dependent field, in the case in which deformations of
the splay-bend type are present. We work on the hypothesis
that only small deformations are allowed. Furthermore, back-
flow effects are not taken into account and we consider that
the field distribution across the sample is homogenous. In
this framework, which is the usual one to investigate the
reorientation process governed by external fields near the
Fréedericksz threshold, the results can be obtained in an ex-
act manner for a large class of external field profiles.
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